4-18-88

Granite City TRIFS Mtg.

Dreft RI Report

Stephen by Josephen Whole Henry T. Appleton
Brad Bradley
Lon Miller

NL 08=6-

OBSG U.S.EPA IEPA 609-443-2405

315-451-4700

315-451-4700

U.S. EPA 312-886-4742 1EPA 217/785-8384

Connie Sullinger Paue Dolan WEPA via teleconference U.S.EPA 312-

Project Schedule 1 - Maintain Current Project Schedule

<u>Task</u>		Duration(day)	Predecessor	Scheduled Date
1.	Project Meeting	-	-	4/18/88-4/19/88
2.	Submittal of Final RI Report	30	1	5/19/88
3.	Final Agency Action on Final RI Report	30	2	6/ 2 0/88
4.	Presentation of Remedial Response Objectives and Identified Remedial Alternatives	15	3	20 7/ 4 /88
5.	Presentation of Initial Screening of Alternatives	75	3	9/1/88
6.	Laboratory Studies	To be negoti	ated if necessary	
7.	Submittal of draft Preliminary FS Report	200	3	2/15/89 1/4/1981 Shill
8.	Final Agency Action on Draft Preliminary FS Report	30	7	2/3/89
9.	Submittal of Final Preliminary FS Report	30	8	3/6/89
10.	Final Agency Action on Final Preliminary FS Report	30	9	V 4/4/89
11.	Selection of Remedial Alternative by USEPA and IEPA	30	10	5/4/89
12.	Submittal of Conceptual Design and Final Report	45	10 11	6/19/89

HENRY T. APPLETON, Ph.D. SENIOR SCIENTIST

BACKGROUND

Dr. Appleton joined O'Brien & Gere in 1987 following ten years of research in biochemical toxicology and risk assessment, most notably with the United States Environmental Protection Agency. He has twice received a Certificate of Award for Special Achievement from that agency.

EDUCATION

State of New York College of Environmental Science and Forestry, 1971, BS/Biochemistry
State of New York College of Environmental Science and Forestry, 1976, Ph.D./Toxicology

PROFESSIONAL AFFILIATIONS

American Association for the Advancement of Science American Chemical Society Sigma Xi American Fisheries Society American Society of Ichthyologists and Herpetologists

EXPERIENCE

Dr. Appleton is a regulatory toxicologist with research experience in the mammalian biochemical toxicology of insecticides and other toxic substances, as well as in determining the aquatic environmental fate and effects of a variety of pollutant chemicals. He has provided technical support to the Test Rules Development Branch, Office of Toxic Substances, U.S. Environmental Protection Agency for toxicological testing activities under the Toxic Substances Control Act (TSCA), and has managed teams of staff scientists in preparation of comprehensive evaluations of exposure and effects data on potential test rule chemicals.

Dr. Appleton has written summaries on classes of toxic substances of concern to the premanufacture notice review process of USEPA, and has evaluated and validated a wide variety of pesticide toxicology data for the USEPA. He has also audited carcinogenicity data for NTP.

During his employment in the USEPA Office of Toxic Substances, Dr. Appleton managed the preparation of Chemical Hazard Information Profiles (CHIPs) and served as technical reviewer/editor for more than sixty such profiles. He interacted extensively with the chemical industry and federal agencies in the exchange of exposure and toxicological test data and assessed the toxicological effects and metabolism of a tris-chloroalkyl phosphate flame retardant, its structural analogs, and metabolites for potential regulatory activity. He consulted with numerous scientists on issues related to carcinogenicity, neurotoxicity, and metabolism of selected chemicals.

For the USEPA Office of Pesticide Programs, Dr. Appleton reviewed pesticide environmental fate data used in support of risk assessment and regulatory activities, and met with industry

Henry T. Appleton, Ph.D., Cont'd. Page 2

concerning registration data requirements. He also estimated terrestrial and aquatic environmental concentrations of pesticides using various modeling techniques.

Dr. Appleton has also served as contributing scientist to numerous Health and Environmental Effects Profiles on toxic chemicals, prepared for the Office of Solid Waste, USEPA. Chemicals include chlorpyrifos, methyl parathion, carbofuran, atrazine, trifluralin, pendimethalin, epichlorohydrin, cyclohexanone and vanadium pentoxide.

PUBLICATIONS

Appleton, H.T. and T. Nakatsugawa. 1972. Paraoxon deethylation in the metabolism of parathion, Pest. Biochem. Physiol., 2: 286.

Appleton, H.T. and T. Nakatsugawa. 1972. The metabolism of paraoxon, (Presented at the National Meeting of the Entomological Society of America, Montreal, Quebec).

Sikka, H. and H. Appleton. 1977. Uptake, distribution and metabolism of the dimethylamine salt of 2, 4-D in fish. J. Agr. Food Chem., 25: 1030.

Appleton, H., S. Banerjee, and H. Sikka. 1980. Fate of 3,3'-dichlorobenzidine in the aquatic environment, in Dynamics, Exposure, and Hazard Assessment of Toxic Chemicals (R. Haque, ed.), pp. 251-272, Ann Arbor, MI 48106.

Appleton, H. and H. Sikka. 1980. Accumulation, elimination and metabolism of dichlorobenzidine in the bluegill sunfish. Environ. Sci. and Tech., 14:50.

Appleton, H. and H. Sikka. 1980. Ambient water quality criteria for dichlorobenzidine, mammalian toxicology and human health effects. United States Environmental Protection Agency, Washington, DC 20460. EPA 440/5-80-040.

Sikka, H., S. Banerjee, E. Pack and H. Appleton. 1980. The environmental fate of TNT and RDX. U.S. Army, Frederick, MD. Final Report, DAMD 17-77-C-7026. March.

Sikka, H., E. Pack, H. Appleton, R. Hsu, and D. Cunningham. 1982. Environmental fate, effects, and health hazards of fenac. U.S. Army Corps of Engineers, Vicksbury, MS 39180. Technical Report A-82-2.

Appleton, H. 1987. A review of potential health effects of halogenated carbonyl compounds (manuscript in preparation).

GOVERNMENT REPORTS

Chloroneb Registration Standard. September 1980. Environmental fate and exposure profile. U.S. Environmental Protection Agency, Washington, DC.

Terrazole Registration Standard. September 1980. Environmental fate and exposure profile.

4-Aminopyridine Registration Standard. September 1980. Environmental fate and exposure profile.

Henry T. Appleton, Ph.D., Cont'd. Page 3

Guidelines for Registering Pesticides in the United States, Subpart N, Environmental Fate, section 163:165-3: Data Requirements for pesticide accumulation studies in fish. March 1981. U.S. Environmental Protection Agency, Washington, DC 20460.

Chemical Hazard Information Profile: Brilliant Blue FCF. December 1981. Assessment Division, Office of Toxic Substances, U.S. EPA.

Chemical Hazard Information Profile: Ethylene Oxide. March 1982.

Appleton, H.T., R.A. Jacobson, P.H. Howard and J. Santodonato. June 1985. Technical Support Document for 9,10-Anthraquinone. Test Rules Development Branch, Office of Toxic Substances, U.S. EPA, Washington, DC.

Bosch, S.J., R.T. Williams, R.A. Jacobson, S.M. Beals, H.T. Appleton, P.H. Howard and J. Santodonato. June 1985. **Technical Support Document for 2-Mercaptobenzothiazoles**. Test Rules Development Branch, Office of Toxic Substances, U.S. EPA, Washington, DC.

Beals, S.M., J.P. Robinson, H.T. Appleton, P.H. Howard and J. Santodonato. October 1985. **Technical Support Document (draft) for 3,4-Dichlorobenzotriflouride**. Test Rules Development Branch, Office of Toxic Substances, U.S. EPA, Washington, DC.

Jackson, J., S.M. Beals, H.T. Appleton, P.H. Howard and J. Santodonato. November 1985. Technical Support Document for Tetrabromobisphenol A. Test Rules Development Branch, Office of Toxic Substances, U.S. EPA, Washington, DC.

Robinson, J.P., S.M. Beals, H.T. Appleton, P.H. Howard and J. Santodonato. November 1985. Technical Support Document for Methylcyclopentane. Test Rules Development Branch, Office of Toxic Substances, U.S. EPA, Washington, DC.

Beals, S.M., J.P. Robinson, H.T. Appleton, P.H. Howard and J. Santodonato. April 1986. **Technical Support Document Draft for Cyclohexane**. Test Rules Development Branch, Office of Toxic Substances, U.S. EPA, Washington, DC.

400 FEE1

NATIONAL FLOOD INSURANCE PROGRAM

FLOOD DISURANCE RATE MAP

CITY OF GRANITE CITY, ILLINOIS MADISON COUNTY

COMMUNITY-PAREL COMMEN

PAGE 4 OF

MEE MAP INDEX FOR PAGES MET TO

BYESTER

JUNE 1, 1878

FEY TO MAP

200 Year Flood Boundary
200 Year Flood Boundary
200 Year Flood Boundary
200 Year Flood Boundary

More Flood Elevation Line With Elevation in Feet**

--- 573----

Bene Flood Elevation in Feet Where Uniform Within Zone**

(EL 987)

Elevation Reference Mark

RM7_X

River Mile

•M1.

**Referenced to the National Geodetic Vertical Datum of 1929

***EXPLANATION OF ZONE DESIGNATIONS**

BONE	EXPLANATION				
A	Areas of 100-year flood have flood elevations and flood hazard factors not determined.				
A 0	Areas of 100-year shallow flooding where tepths are between one (1) and thice (3) feet; average depths of inusuation are shown; but no flood hazard factors are determined.				
АН	Areas of 190-year shallow flooding where depths are between one (1) and three (3) feet; base flood elevations shown, but no flood hazard factors are determined				
A1 A30	Areas of 100-year flood; base flood elevations and flood hazard factors determined.				
A99	Areas of 100-year flood to be protected by flood protection system under construction; base flood elevations and flood hazard factors not determined.				
•	Areas between limits of the 100-year flood and 500-year flood, or certain areas subject to 100-year flooding with average depths less than one (1) foot or whore the contributing drainage area is less than one square mile or areas protected by leves from the sase flood. (Medium shading)				
C	Areas of minimal flooding, (No shading)				
D	Areas of undetermined, but possible, flood hazards.				
٧	Areas of 100-year coastal flood with velocity (wave action), base flood elevations and flood hazard factors not determined.				
V1 V30	Areas of 100 year coastal flood with velocity (wave action); base flood elevations and flood hazard factors determined.				

NOTES TO USER

Certain areas not in the spicial flood hazard areas (zones A and V) may be protected by flood control structures.

This map is for flood insurance purposes only, it does not necessarily show all areas subject to flooding in the community or all planimetric features outside special flood hazard areas.

For adioning map panels, see separately printed Index To Map Panels

INITIAL IDENTIFICATION NOVEMBER 16 1973

CONVERSION TO REGULAR PROGRAM

out at 4/18/88 meeting

NL GRANITE CITY COMPARISON OF LEAD TO OTHER METALS OBSERVED IN WASTE PILE UPPER STRATA

Systemity of the present

Parameter	MCL (1)	MCLPh(2)	Max. Conc. Pb(3)	Avg. Conc. Ph(3) Avg. Conc. i	Margin (4)
Pb	0.05	-	-	-	
2p	0.003	16.7	43.6	58.6	
As	0.05	1.0	23.3	78.6	23
Ba	1	0.05	609.2	618.4	12,000
Cd	0.010	5.0	435.9	1404	87
DUI TO THE PARTY OF THE PARTY O	1 (0.02)	0.05 (2.5)	16.4	54.0	6.6
C r	0.05	1.0	7750.	12400.	7800
Contraderstations to make mention	American 0.3 American	0.17	U.83	3.0	The state of the s
Min	0.05	1.0	121.8	28 1.1	120
Hg	0.002(0.0005)	25(100)	174,400	290,000	1700
Ni	(1.0)	0.05	659.6	1714	13,000
Se	0.01	5.0	279,000	138,400	56,000
Ag	0.05(0.005)	1.0(10.0)	11,530	14,240	1200
Zn	5	0.01	20.2	60.1	2000
				Known Hu	man
(1) Values exp	ressed in mg/l		`\	Known Hu Careina	gans by Inha

(2) Ratio of lead MCL to MCL of other metal

(3) Ratio of reported concentration of lead to reported concentration of other metal

(4) A value greater than 1.0 means that the lead concentration relative to the MCL for lead is higher than the other metals concentration in soil relative to its MCL.